
Digital Object Identifier (DOI) 10.1140/epjcd/s2004-01-002-1
Eur Phys J C 37, s1, s9–s26 (2004) EPJ C direct

electronic only

Charmonium at finite temperature in quenched lattice QCD

Takashi Umeda1a, Kouji Nomura2, and Hideo Matsufuru3b

1 Center for Computational Physics, University of Tsukuba, Tsukuba 305-8577, Japan
2 Department of Physics, Hiroshima University, Higashi-hiroshima 739-8526, Japan
3 Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

Received: 18 April 2003 / Accepted: 20 August 2003 /
Published Online: 18 February 2004 – c© Springer-Verlag / Società Italiana di Fisica 2004

Abstract. We study charmonium correlators in pseudoscalar and vector channels at finite temperature
using lattice QCD simulation in the quenched approximation. Anisotropic lattices are used in order to
have sufficient numbers of degrees of freedom in the Euclidean temporal direction. We focus on the low
energy structure of the spectral function, corresponding to the ground state in the hadron phase, by
applying the smearing technique to enhance the contribution to the correlator from this region. We employ
two analysis procedures: the maximum entropy method (MEM) for the extraction of the spectral function
without assuming a specific form, to estimate the shape of the spectral function, and the standard χ2 fit
analysis using typical forms in accordance with the result of MEM, for a more quantitative evaluation.
To verify the applicability of the procedures, we first analyze the smeared correlators as well as the point
correlators at zero temperature. We find that by shortening the t-interval used for the analysis (a situation
inevitable at T > 0) the reliability of MEM for point correlators is lost, while it subsists for smeared
correlators. Then the smeared correlators at T � 0.9Tc and 1.1Tc are analyzed. At T � 0.9Tc, the spectral
function exhibits a strong peak, well approximated by a delta function corresponding to the ground state
with almost the same mass as at T = 0. At T � 1.1Tc, we find that the strong peak structure still persists
at almost the same place as below Tc, but with a finite width of a few hundred MeV. This result indicates
that the correlators possess a nontrivial structure even in the deconfined phase.

1 Introduction

The charmonium systems have been payed much attention
as a signal of the QCD phase transition. Due to a change
of the interquark potential by thermal effects, the J/ψ
mass is expected to decrease when approaching the phase
transition [1]. Above Tc, the screening of the interquark
potential may dissolve the charmonium states, and the
resulting J/ψ suppression has been regarded as one of the
most important signals for detecting the formation of the
plasma state [2,3,4].

In principle, lattice QCD simulations can provide in-
formation on such excitation modes based on a nonper-
turbative and model independent framework, since the
correlation functions in the Euclidean temporal direction
measured on a lattice are related to the real time retarded
and advanced Green functions by analytic continuation
from a single spectral function [5,6]. In practice, however,
the extraction of reliable information from numerical data
for correlators becomes increasingly difficult as the tem-
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perature increases. There are two restrictions on the cor-
relators at finite temperature: the numbers of available
degrees of freedom, and the physical extent in the tempo-
ral direction. The former can be improved by the use of
anisotropic lattices, on which the temporal lattice spac-
ings are finer than the spatial ones [6,7,8]. The latter re-
striction is, however, physically inevitable and may spoil
standard procedures applicable at zero temperature.

Recently, there has been technical progress in the di-
rect extraction of the spectral function from lattice data of
correlators [9,10]. The key role is played by the maximum
entropy method (MEM), combined with the singular value
decomposition for constructing the functional bases in the
space of spectral functions. At zero temperature this tech-
nique has reproduced spectra consistent with the standard
fit analyses [9,11,12,13,14]. Application to systems at fi-
nite temperature is, however, not straightforward because
of the two restrictions mentioned above [15]. In particu-
lar, shortness of temporal extent, 1/T , makes it difficult
to extract the correct low energy structure of the spectral
function. Therefore, one at least needs to verify at T = 0
that the method produces results which are stable against
variation of the t-interval. There have already been a num-
ber of applications of MEM for finite temperature [16,17,
18,19], but as long as such tests are not systematically
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performed these results may contain uncontrolled uncer-
tainties. In fact, we will show in this paper that MEM ap-
plied to point-point correlators at T = 0 with shortened
t-interval fails to produce the correct spectral functions.
We therefore apply the smearing technique to enhance the
contribution of the low energy part to the correlators [12,
7,8]. For the smeared correlators at T = 0, MEM works,
at least qualitatively, also with a shorter t-interval.

In this paper, charmonium correlators are investigated
using lattice QCD simulations in the quenched approxi-
mation. We focus on properties of the ground state, more
generally the low energy structure of the correlator, rather
than the whole spectral function. This paper mainly deals
with the following two subjects:

(1) A technical investigation of procedures for extrac-
tion of reliable information from the numerical data of cor-
relators in the temporal direction. In addition to MEM, we
apply the standard χ2 fit analysis assuming a peak struc-
ture for the spectral function [20]. The latter approach
complements the former, since MEM with small numbers
of data points appears not work beyond the level of qual-
itative estimate for the shape of spectral function.

(2) A study of temperature effects on the correlators
near to the deconfining phase transition. Below Tc, the
question is whether the charmonium mass shifts, as ex-
pected from the potential model approach [1]. Above Tc,
previous studies have indicated that nontrivial structures
may survive [7,8]. The possibility of the existence of col-
lective modes in the plasma phase is therefore carefully
examined.

We use quenched anisotropic lattices with the renor-
malized anisotropy ξ = aσ/aτ = 4 and the spatial lattice
cutoff a−1

σ � 2 GeV. The phase transition occurs near
Nt = 28, and hence sufficiently many points are available
in the vicinity of Tc. At T � 0 we try to determine the con-
ditions for a reliable extraction of the spectral function.
We find that for the point correlators, reliability of MEM
with less than 24 t-points (meaning a physical t-range of
less than O(0.5fm) ∼ 0.7Tc) is not guaranteed with the
present level of statistics. Therefore only the smeared cor-
relators are analyzed at finite temperature, T � 0.9Tc and
1.1 Tc.

Here we comment on the smearing technique. Al-
though the correlator of spatially extended operators has
no direct relation to the physically observable dilepton
production rate, the properties of collective excitations
such as mass and width are unchanged and can be probed
more efficiently. To the extent that these excitations drive
the dilepton rate we can at least say something about their
position and shape, if not about their strength. A disad-
vantage is the possibility of detecting a fake peak, which
may be produced by the smearing even in the case of free
quarks [16]. To distinguish such an artifact from a gen-
uine physical peak we use besides the smearing function
based on the wave function obtained at T = 0 also a nar-
rower one of essentially half-width. We speak thereby of
“smeared” and of “half-smeared” correlators (because the
energy region enhanced by this narrower smearing func-
tion is wider, while the high frequency part of O(1/aτ )

is still sufficiently suppressed). Comparing the results of
these two types of smeared correlators, one can argue
whether the observed peak structure is an artifact of free
quarks or physical indication of a collective mode.

This paper is organized as follows. In Sect. 2, we re-
call some fundamental properties of the spectral function.
For later uses in the χ2 fit analysis, presumable forms of
the spectral function for a collective mode are discussed.
Section 3 reviews anisotropic lattice actions and describes
the parameters used in this paper. We also show the spec-
tral function of the correlator of a free quark-antiquark
pair, for comparison with the correlators from the Monte
Carlo simulation. In Sect. 4 our analysis procedures are
explained. Section 5 describes the setup of Monte Carlo
simulation. The following three sections show the result of
the numerical simulation. In Sect. 6 we analyze the corre-
lators at zero temperature, as a preparation for the more
involved situations at finite temperatures. Sections 7 and
8 show the results at T � 0.9Tc and 1.1Tc, respectively.
In each case, we first estimate the presumable form of the
spectral function with MEM, and then apply the χ2 fit
analysis for a more quantitative evaluation of its structure.
Section 9 is devoted to our conclusions on the technical
and physical implications of the results. Our preliminary
results have been reported in [21].

2 Spectral function

In this section β represents the inverse temperature and
should not be confused with the coupling of gauge field
which appears in later sections. For a finite lattice of tem-
poral extent Nτ we have β = 1/T = Ntaτ . The Euclidean
time is represented by τ in this section to make clear the
distinction between the Euclidean and Minkowski formu-
lations. In later sections we use also t as the Euclidean
time, because no confusion is expected for the lattice QCD
formulated in the Euclidean space.

We consider correlators of the form:

C(τ) =
∑

x

〈O(x, τ)O†(0, 0)〉, (1)

where the operator O(x, τ) is a quark bilinear,

O(x, τ) =
∑

y

φ(y)q̄(x + y, τ)Γq(x, τ). (2)

4×4 matrix Γ specifies the quantum number, such as, for
example, Γ = γ5 for pseudoscalar and γi (i = 1, 2, 3) for
vector channels. φ(y) is a smearing function defining the
spatial extension of the bilinear operator. Since the smear-
ing in general violates the gauge invariance of the correla-
tor, one needs to fix the gauge or employ a gauge invariant
form of the smearing function. We fix the configurations
to the Coulomb gauge, since it is widely used and allows
easy implementation of the smearing function. Source and
sink operators are always identical in this work.

Point correlators correspond to a ultra local “smearing
function” φ(y) = δy,0 in (2). For the smeared correlators
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we use smearing function of the form

φ(y) = exp(−a|y|p), (3)

where the parameters a and p are determined by fitting
the wave function measured in the numerical simulation
to the above form. The smearing technique described here
was already applied to the problems of the charmonium
correlators at T > 0 [8], as well as to the light meson
correlators [7].

For a while let us consider the continuum Euclidean
space. The Matsubara Green function is represented in
terms of the spectral function as

G(νn,p) =
∫ ∞

−∞

dω

2π
ρ(ω,p)

iνn − ω + iε
. (4)

The spectral function ρ(ω,p) is represented as

ρ(ω,p) =
1

2Z(β)

∑

n,m

(e−βEn − e−βEm)|〈n|O(0)|m〉|2

×(2π)4δ(ω − Em + En)δ(p − Pm + Pn), (5)

which is an odd real function due to the bosonic nature of
the present correlator and positive for ω > 0.

The retarded and advanced Green functions for real
time are represented as

GR(ν,p) =
∫ ∞

−∞

dω

2π
ρ(ω,p)

ν − ω + iε
(6)

GA(ν,p) =
∫ ∞

−∞

dω

2π
ρ(ω,p)

ν − ω − iε
(7)

with the same spectral function, ρ(ω,p) [5]. The spectral
function is then represented as

ρ(ν,p) = −2 ImGR(ν,p) = 2 ImGA(ν,p). (8)

Strictly speaking, the above integrations do not always
converge, and one needs appropriate subtraction terms.
On the other hand, the high frequency part of the spec-
tral function is not practically significant in the numerical
analysis, because of the strong suppression by K(τ, ω) de-
fined below, and of the existence of the lattice cutoff. We
therefore do not consider these subtractions in this paper.
We note that the smearing of the operator in (2) is per-
formed only in the spatial directions, and therefore the
analytic continuation of the Matsubara Green function to
the real time Green functions is independent of this op-
eration (but, of course, the spectral function depends on
the operators, hence on smearing).

In the following we are only concerned with the corre-
lators projected on the zero momentum states and discard
the argument p. Since the spectral function ρ(ω) is an odd
function in ω, the correlator (1) is represented as

C(τ) =
∫ ∞

0

dω

2π
K(τ, ω)ρ(ω). (9)

where

K(τ, ω) =
e−ωτ + e−βω+ωτ

1 − e−βω . (10)

In the numerical simulation of lattice QCD one measures
the left hand side of (9). The question is how to solve
the inverse problem to obtain ρ(ω) with limited data for
C(τ). The procedures to extract information about ρ(ω)
are described in Sect. 4.

Now we shall present several ansätze for the spectral
function which will be used for later analysis of the lat-
tice data, and discuss their physical implications. A simple
representation of a collective mode is the following form
of the retarded Green function:

GR(ν) =
R(ν)

ν − µ+ iγ(ν)/2
, (11)

where µ and γ(ν) express the dispersion and the width
of the mode. The corresponding spectral function is the
well-known Breit-Wigner form. We shall neglect the fre-
quency dependence of the width γ for simplicity. Taking
the oddness of the bosonic spectral function into account,
ρ(ω) reads

ρ(ω) =
γR(ω)

(ω −m)2 + γ2/4
− γR(ω)

(ω +m)2 + γ2/4
. (12)

If the quantum numbers of the operators used to repre-
sent the collective mode are the correct ones, the physical
properties associated with the mode, characterized by µ
and γ, are independent of the particular operator. There-
fore the smeared operators can be used to observe these
quantities. However, the smearing does change the over-
lap of the operator with the state, R(ω). Therefore the
effects depending on R(ω) and those coming only from
the peak structure (represented with µ and γ) should be
distinguished. If the change of R(ω) is sufficiently gentle
over the region of the observed peak, the ω dependence in
R(ω) is negligible.

Instead of (12), at zero temperature one often uses the
relativistic Breit-Wigner type form:

ρ(ω) =
sign(ω)ω2mγ(4R/m)
(ω2 −m2)2 +m2γ2 . (13)

This form shows a similar behavior to (12) around the
peak position. However, the behavior far from the peak is
different. In particular (12) and (13) give different contri-
bution to the integral (9) near vanishing ω: In the vicinity
of ω = 0, (12) behaves linearly in ω, while (13) behaves
linearly in ω2. Since K(τ, ω) behaves as (2−βω)/βω, (12)
gives a t-independent contribution to the integral (9) [15].
We note that there is no indication of linear behavior in
ω in the small ω region of the spectral functions obtained
from our numerical data with MEM, as shown in Sect. 7
and 8. Therefore, in the χ2 fit analysis, we use the form of
(13) as ansatz for the spectral function to which the lat-
tice data are fitted. While the use of (13) is valid at zero
temperature, it should only be taken as a representative
form of peak structure at T > 0, and hence the parame-
ters m and γ do not have a strict sense but represent only
a convenient parameterization of the peak.

In the limit of γ → 0, both (12) and (13) tend towards
a delta function form,

ρ(ω) = 2πR [δ(ω −m) − δ(ω +m)] . (14)
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This form corresponds to the standard exponential fit of
correlators used in the hadron spectroscopy at zero tem-
perature.

3 Anisotropic lattice QCD

3.1 Anisotropic lattice actions

For analysis of the correlators in the temporal direction at
T > 0 the fine temporal resolution is very important to ex-
tract meaningful information [7,8,20]. Anisotropic lattices
have become a powerful tool to achieve sufficiently high
temporal cutoff while keeping total computational size
modest. In the following, we summarize the anisotropic
lattice actions employed in this work. The parameters we
use are described in the next subsection.

For the gauge field, we adopt the standard Wilson pla-
quette action [22],

SG = βγG
∑

x

3∑

i=1

[
1 − 1

3
ReTrUi4(x)

]

+
β

γG

∑

x

3∑

i<j=1

[
1 − 1

3
ReTrUij(x)

]
, (15)

where Uµν is a product of link variables along a plaquette
in the µ-ν plane. Here the parameters β and γG are bare
coupling and bare anisotropy, respectively.

For the quark field we use the O(a) improved Wilson-
type action [8,23,24]:

Sq =
∑

x,y

q̄(x)K(x, y)q(y), (16)

K(x, y) = δxy

−κτ
[
(1−γ4)U4(x)δx+4̂,y + (1+γ4)U4(x− 4̂)δx−4̂,y

]

−κσ
3∑

i=1

[
(r−γi)Ui(x)δx+î,y + (r+γi)Ui(x− î)δx−î,y

]

−κσcE
3∑

i=1

σ4iF4i(x)δx,y

−κσcB
3∑

i>j=1

σijFij(x)δx,y. (17)

where κσ and κτ are the spatial and temporal hopping
parameters, respectively, r is the spatial Wilson param-
eter, and cE , cB are the clover coefficients for the O(a)
improvement. We set r = 1/ξ and cE , cB to the tadpole-
improved tree-level values, and vary the two parameters
κσ and κτ to change the quark mass and the fermionic
anisotropy. The tadpole improvement [25] is performed
by rescaling the link variables as Ui(x) → Ui(x)/uσ and
U4(x) → U4(x)/uτ , respectively, with the corresponding

mean-field values of the spatial and temporal link vari-
ables, uσ and uτ . Then cE and cB with the choice r = 1/ξ
read as

cE = 1/uσu2
τ , cB = 1/u3

σ. (18)

Instead of (κσ, κτ ), it is convenient to use the parameters

γF ≡ uτκτ/uσκσ, (19)
1
κ

≡ 1
uσκσ

− 2(γF + 3r − 4) = 2(m0γF + 4), (20)

where m0 is the bare quark mass in temporal lattice units.
κ plays the same role as on isotropic lattices, and controls
the bare quark mass. γF is the bare fermionic anisotropy.

The lattice quark field q(x) in the action (17) is related
to the dimensionful field ψ(x) as

ψ(x) = a−3/2
σ Zq(β, κ)K(κ)q(x), (21)

where we assume mQ � a−1
τ . K(κ) is so-called KLM nor-

malization factor [26],

K(κ) = [2uτκτ (1 +m0)]1/2

=
[

1 + 2κ(γF − 4)
1 + 2κ(γF + 3r − 4)

]1/2

. (22)

We consider the tadpole-improved tree-level matching of
the fields in continuum and lattice theories, and hence Zq
is set to unity.

3.2 Parameters

We here describe the parameters used in this paper. First,
we discuss the calibration of gauge and quark fields. In an
interacting theory, the renormalized anisotropy ξ = aσ/aτ
generally differs from the bare anisotropy parameters γG
and γF . Therefore one needs to tune the latter such that

ξG(γG, γF ) = ξF (γG, γF ) = ξ (23)

holds, where ξG and ξF are the observed anisotropies de-
fined through the gauge and fermionic observables, re-
spectively. In quenched simulations, one can calibrate the
gauge and fermion fields separately, first the former, and
then the latter.

For the calibration of the gauge field, we refer to an
elaborated work by Klassen [27] which uses Wilson loops
in the spatial-spatial and spatial-temporal planes and is
performed at 1% accuracy level. Making use of his relation
of γG to β and ξ, we choose β = 6.10 and γG = 3.2108 cor-
responding to the renormalized anisotropy ξ = 4. These
values were also adopted in [24], and correspond to the
spatial lattice cutoff a−1

σ = 2.030(13) GeV set by the
hadronic radius r0 [28].

For the quark field, we use the result of [24] in which
the calibration was performed on the same lattice as this
work using the meson dispersion relation in a quark mass
region including the charm quark mass. Accordingly, we
adopt κ = 0.112 and γF = 4.00, namely mq = 0.121, as
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Fig. 1. The spectral functions for the pseudoscalar correlators
composed of free quarks at T = 0

the values corresponding to the charm quark mass. (In [29]
it was argued that the value of γF tuned for the massless
quark is also applicable to the charm quark mass. For
historical reason, however, we use the result of the mass
dependent tuning in [24]. The difference is actually small
and does not cause any significant effect.)

As smearing function we use the result for the wave
function in the Coulomb gauge at T = 0. For the vec-
tor channel the fit to (3) yields a = 0.2275(9) and p =
1.258(5). These values are used for both the pseudoscalar
and vector correlators.

In addition, we also use a narrower smearing function
with a = 0.45 and the same p. The correlators smeared
with this function are called half-smeared correlators, since
the smearing function has about twice the slope as the
main one and hence a smaller smearing effect is expected:
the low energy part of the correlator is only partially en-
hanced, while the high energy part of O(1/aτ ) is suffi-
ciently reduced. This intermediate smearing function plays
an important role at T > Tc in examining whether the
observed peak structure of the spectral function for the
smeared correlator is an artifact of smearing or a genuine
physical effect (Sect. 8).

3.3 Free quark case

In [16] it was pointed out that the smearing may pro-
duce an artificial peak in a spectral function even for non-
interacting quark and antiquark. In order to distinguish
a genuine physical peak from such an artificial one, one
needs to know how it looks like through the analysis ap-
plied when almost free quark picture is realized. For a
comparison of the result of Monte Carlo simulation with
the free quark case, the analysis of the latter should be
performed under a condition as much similar to the for-
mer as possible. We therefore consider spectral functions
of systems composed of free quarks with discretized mo-
menta on a finite lattice of the same size as the simulation.

The spectral function of the correlator (1) in the case
of free quarks is obtained from the expression (5). In the
case of vanishing total momentum, for positive frequency,

ρ(ω) =
π

Z

∑

p

[1 − e−Nt2E(p)]φ̃(p)2

×
∑

j,k=1,2

[
v̄j(−p)Γuk(p)

2E(p)

]2

δ (ω − 2E(p)) (24)

where uj(p) and vj(p) are the quark and antiquark spinors
with j-th spin, and φ̃(p) is the Fourier transform of φ(y).
The summation in p is taken over all modes on the finite
lattice of the same size as in Monte Carlo simulation, 203.
With the present lattice quark action, the energy of free
quark, E(p), satisfies the dispersion relation [8,23]

coshE(p) = 1 +
p̄2 +

[
m0 + r

2γF
p̂2

]2

2
[
1 +m0 + r

2γF
p̂2

] , (25)

where p̄i = (1/γF ) sin pi and p̂i = 2 sin(pi/2). We set the
bare quark anisotropy γF = ξ = 4 and the bare quark
mass m0 = 0.121 such that the free quark has the same
value as in the Monte Carlo simulation.

Figure 1 shows the spectral functions of point,
smeared, and half-smeared correlators composed of free
quarks in PS channel. The integral of these functions are
normalized to unity. Since on the finite lattice the spec-
tral function is a sum of delta functions, we represent each
contribution at momentum p with a Gaussian of width
0.005 to make it visible in Fig. 1. As clearly shown in
the figure, the smearing of the operator strongly enhances
the low energy part of the spectral function, as compared
to the point correlator. In the (fully) smeared correlator,
several low momentum states over the range of ω about
0.1 dominate the correlator. From this correlator, there-
fore, an analysis with poor energy resolution in ω might
produce a peak with full width of order of 0.1 instead of a
sum of distinct peaks corresponding to individual momen-
tum states. As we will see in Sect. 4.4, the χ2 fit analysis
with the single Breit-Wigner type ansatz applied to the
smeared correlator composed of free quarks produces a
much narrower peak with the width of about 0.027 cen-
tered at ω � 0.275. This is of the same order of magnitude
as the width extracted from the correlators in Monte Carlo
simulation at T � 1.1Tc. Therefore this occasion must be
examined carefully.

It is for this purpose that the half-smeared correla-
tor is introduced. As shown in Fig. 1, a slightly higher
and wider frequency region contributes dominantly to the
half-smeared correlator than to the smeared one. If the
correlator is approximated by a single peak, the peak will
be centered at larger energy and have wider width as com-
pared to those of the smeared correlator. This behavior is
verified in Sect. 4 by applying the χ2 fit analysis to the
correlators composed of free quarks. Therefore, comparing
the results for spectral functions for the smeared and half-
smeared correlators can help judging whether the peak
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observed from the simulation data is a genuine excitation
mode or an artifact brought by the smearing.

Although we argued the case with almost free quarks
with the correlators composed of contributions from dis-
crete momentum modes, at nonzero coupling each momen-
tum mode fluctuates and its contribution to the spectral
function is smeared. In such a case, the spectral function
may become smoother than as is shown in Fig. 1 (in Fig. 1
the Gaussian function is introduced by hand). Through
analysis procedures, MEM and χ2 fit, such a spectral func-
tion should be observed as a peak with larger width than
the case without fluctuation. Therefore judging whether
the observed peak is physical or artificial is rather easy, if
the observed peak in Monte Carlo simulation has a small
width. While such a judgment will become more difficult
as the temperature increases, in present work the observed
widths in numerical simulation are sufficiently small as
shown in later sections.

4 Analysis procedure

4.1 Strategy of analysis

One of the goals of this work is to investigate techniques to
extract the relevant information of the spectral function
from the correlators with limited numbers of the degrees
of freedom. We treat an inverse problem represented as

C(t) =
∫ ∞

0
dωK(t, ω)A(ω), (26)

where C(t) is the given lattice result for the correlator,
and the spectral function A(ω) is what we need to ob-
tain. Hereafter we shall denote the spectral function re-
constructed from the lattice data A(ω) instead of ρ(ω)
(×(2π)−1). Unless stated otherwise, the variables are in
temporal lattice units in the following. The kernel K(t, ω)
is given as

K(t, ω) =
e−ωt + e−ω(Nt−t)

1 − e−Ntω
. (27)

This is the continuum type kernel, and an alternative form
of the kernel which explicitly incorporate the lattice struc-
ture was also applied in the literatures [9,16]. We have seen
no significant difference in applying the two kernels, there-
fore we shall not further discuss this point. In practice,
the above integration over the frequency ω is replaced by
a summation with sufficiently fine discretization ∆ω and
a cut off at some maximum value ωmax.

As already mentioned, one of the main analysis pro-
cedures is the maximum entropy method (MEM) [9]. Be-
fore applying it to finite temperature problems, one should
verify its applicability under the condition which one en-
counters at T > 0. For this we test how the result changes
when varying the number of data points used in analysis
for the correlators at T = 0. The condition to be satisfied
is that the ground state peak – which we know to exist at
T = 0 – is correctly reproduced, at least at a qualitative

level. We stress that without such verification, the result
of MEM may contain uncontrolled artifacts at finite tem-
perature. Concerning quantitative questions, we find that
with reduced number of data points, MEM hardly gives
a result beyond the qualitative level, for example for the
width of a peak.

Another technique in our hand is the standard χ2 fit
assuming a certain ansatz for the spectral function. This
method has been applied to a problem of glueballs at finite
temperature [20]. A disadvantage of this approach is that
one needs to assume a form of the spectral function, which
introduces a bias. For this purpose, the result of MEM
can be a good guide. Once a specific ansatz is used, the
χ2 fit gives much more reliable results than MEM for the
parameters, both in statistical as well as systematic sense.

Therefore MEM and the χ2 fit are complementary to
each other at this stage of computational power, and in
combination provide a more reliable way to analyze the
structure of spectral functions than taken independently.
We thus propose a two-step procedure: we first apply
MEM to the correlators, for a rough estimate of the shape
of spectral function. Once a presumable form is known,
we then examine this form using χ2 fit, and estimate the
values of parameters such as the mass and width of a peak
structure.

4.2 Maximum entropy method

Our MEM analysis basically follows [9], which reviews in
detail the maximum entropy method applied to data of
lattice QCD simulation. Here we briefly summarize just
several formulae necessary for the later description of our
analysis.

To obtain A(ω) from C(t) by solving the inverse prob-
lem (26), the maximum entropy method maximizes a func-
tional

Q(A;α) = αS[A] − L[A]. (28)

L[A] is the likelihood function,

L[A] =
1
2

∑

t1,t2

[C(ti) − CA(ti)]V (ti, tj)−1[C(tj) − CA(tj)],

(29)
where CA(t) is the resulting correlator (26) for the trial
A(ω), and V (ti, tj) is the covariance matrix of the data

V (ti, tj) =
1

N(N−1)

N∑

k=1

[Ck(ti) − C(ti)] [Ck(tj) − C(tj)]

(30)
with Ck(t) the k-th sample of the correlator. The standard
χ2 fit minimizes this functional L. The Shannon-Jaynes
entropy S[A] is defined as

S[A] =
∫ ∞

0
dω

[
A(ω) −m(ω) −A(ω) log

(
A(ω)
m(ω)

)]
.

(31)
The function m(ω) is called the default model, and should
be given as a plausible form of A(ω). The parameter α can
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be integrated out at the last stage of calculation. Following
[9], we use a form

m(ω) = mDMω
2. (32)

In the case of point correlators, a natural choice of mDM

is determined according to the asymptotic behavior of the
meson correlators at large ω in perturbation theory. Al-
though such an asymptotic behavior is not observed in
practical simulation because of the finite lattice cutoff,
this form has been successfully applied to problems at
zero temperature [9,13]. For the smeared correlators, the
situation is more subtle, since the high frequency part
of the correlator is suppressed by the smearing function.
We therefore adopt a practical choice: we normalize the
smeared correlator so as to produce the same overlap with
the ground state as the point correlator. Then the same
normalization is also applied to the correlators at finite
temperatures, and we observe how the result changes with
the change of mDM .

In the maximization step of Q(A;α) the singular value
decomposition of the kernel K(t, ω) is used. Then the
spectral function is represented as a linear combination
of the eigenfunctions of K(t, ω). The number of degrees
of freedom of A(ω) is accordingly reduced to the number
of data points of the correlator. Although the coefficients
of the linear combination for A(ω) can in principle be de-
termined uniquely from the data without introducing an
entropy term, the small eigenvalues of K(t, ω), θi, lead for
the spectral function to a singular behavior; hence trun-
cation at some i is practically required [10]. In MEM, the
addition of the entropy term stabilizes the problem and
guarantees an unique solution for the coefficients of the
eigenfunctions [9]. In our analysis, we use only the basis
functions for which θi > 10−12 × θ1 holds, where θi is i-th
largest singular value. This restriction has no significant
effect on the result.

4.3 χ2 fit with ansatz for the spectral function

The standard χ2 fit method minimizes the likelihood func-
tion L, (29), with an assumed form for the spectral func-
tion. A most simple form for fit function is the delta func-
tion:

Apole(ω; r,m) = rδ(ω −m). (33)

This form is referred to as pole ansatz in the following.
At T = 0, a sum of several pole terms should describe
well the correlators. For the correlators below Tc, where
narrow thermal widths are expected, the multi-pole form
is also convenient to test this assumption.

As noted in Sect. 2, to describe a peak structure with
finite width we adopt the relativistic Breit-Wigner form
(referred to as BW form),

ABW (ω; r,m, γ) =
ω2rmγ

(ω2 −m2)2 +m2γ2 . (34)

This is the same form as (13), with slightly modified no-
tation for convenience. This ansatz neglects the ω depen-
dence of r, and hence is valid only for the case that the

width of the peak, γ, is sufficiently small compared with
the change of the smearing function in the region of inter-
est.

Combining these two forms, we fit the numerical data
of correlators to the following ansätze:

2-pole form: this form is suitable for description of cor-
relators at T = 0. It is also expected to be a good
representation of correlators at T < Tc;

A(ω) = Apole(ω; r0,m0) +Apole(ω; r1,m1). (35)

1-BW form: if the contribution from the high frequency
part of the spectral function is negligible, a collective
excitation at low energy is expected to be well repre-
sented by a single Breit-Wigner type ansatz:

A(ω) = ABW (ω; r0,m0, γ0). (36)

This form is also a good representation for the spectral
function of the smeared correlator composed of free
quarks.

BW+pole form: although the lowest peak is well repre-
sented with the Breit-Wigner type function, there may
exist contribution from high frequency region. Since
the smearing of operator suppress such contribution,
remaining effects of this region may be represented as
a single pole-like term. This is the reason that we fit
the data to the form

A(ω) = ABW (ω; r0,m0, γ0) +Apole(ω; r1,m1). (37)

This is the most general ansatz for χ2 fit in this paper.

These ansätze forms are the basis for the analysis of the
lowest peak structure, which corresponds to the ground
state at T < Tc. The structure in the high frequency region
is out of the scope of this paper.

4.4 Analysis of correlators composed of free quarks

To learn how to distinguish physical features of the corre-
lators from artifacts due to the smearing we apply MEM
and the χ2 fit analyses to the correlators composed of free
quarks on our lattice, which were discussed in Sect. 3.3.

For the MEM analysis, the fluctuations of the correla-
tors are given by hand in the same manner as the mock
data analyses in [9,13]. The deviations of the correlators
are less than those of the data from the Monte Carlo sim-
ulation. Figure 2 shows the result of MEM applied to the
smeared correlator in pseudoscalar channel composed of
free quarks at T = 0. The upper bound of t region used
for the analysis, tmax, is varied to observe how the result of
MEM depends on the t-region used. With decreasing tmax,
the resolution of the spectral function becomes worse, and
for tmax ≤ 16 the spectral function extracted with MEM
displays just one peak. Therefore for the circumstances
specific at T > 0 MEM does not have sufficient resolu-
tion to distinguish individual states if they are closer than
about 0.05a−1

τ . If the correlator is composed of almost free
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Fig. 3. The result of χ2 fit analysis for the spectral functions
from the PS correlators composed of free quarks at Nt = 26

quarks, the width extracted with MEM may be of order
of 0.05–0.1 in temporal lattice units.

We also apply the χ2 fit analysis to the correlators
composed of free quarks. In this case the errors of the same
size as in Monte Carlo simulation are just put on the corre-
lators without fluctuating them. Figure 3 shows the result
of the χ2 fit of the correlators composed of free quarks
at Nt = 26 using the 1-BW ansatz. The tmin dependence
of mass and width (with fixed tmax = 13) indicates that
the single BW ansatz describes rather well the correlators.
As is observed in Fig. 3, if the correlator is composed of
free quarks, the χ2 fit gives sizable difference in mass and
width parameters for the smeared and half-smeared cor-
relators. This dependence is in agreement with the fact
that the propagator should only show the two free quark
cut and no particle-like excitations and indicates that by
testing the dependence of the result on the smearing func-
tion we can distinguish physical effects from artifacts due
to smearing.

5 Setup of numerical simulation

5.1 Lattice setup

The zero temperature lattice used in this paper is the third
one of [24]: a quenched lattice of size 203 × 160, gener-
ated with the standard plaquette action with (β, γG) =
(6.10, 3.2108). These coupling and bare anisotropy cor-
respond to the renormalized anisotropy ξ = aσ/aτ = 4
within 1% accuracy [27], and the spatial lattice cutoff
a−1
σ = 2.030(13) GeV set by the hadronic radius r0

[28]. At T = 0, 500 configurations are generated with
the pseudo-heat-bath update algorithm, each separated
by 2000 sweeps after 20000 sweeps for thermalization.
The mean-field values are defined as the average values
of link variables in the Landau gauge, and obtained as
uσ = 0.8059(1) and uτ = 0.9901.

To determine the critical temperature, we measure
the Polyakov loop susceptibility at Nt = 27, 28, and
29 at β = 6.10, and in addition, at several values of
β (with corresponding values of γG) around β = 6.10
at fixed Nt = 28. At β = 6.05 the lattice scale set by
r0 is a−1

σ = 1.892(10) GeV, which together with a−1
σ at

β = 6.10 determine the scales at the other values of β
by linear interpolation. The susceptibility peaks at about
β = 6.10 and Nt = 28. The critical temperature is ob-
tained as Tc � 290 MeV with 10 MeV of roughly estimated
uncertainty. This value is slightly higher than the conven-
tional values with the scale set by the string tension, as a
common tendency by adopting the scale by r0.

The charmonium correlators at T > 0 are measured
for two values of temporal lattice extent, Nt = 32 and 26.
Corresponding temperatures are 0.88Tc for Nt = 32, and
1.08Tc for Nt = 26. For brevity, these temperatures are
hereafter referred to as 0.9Tc and 1.1Tc, respectively. Thus
the temperatures treated in this paper are in the vicinity
of the transition. At each of these two Nt’s, we generate
1000 configurations each separated by 500 pseudo-heat-
bath sweeps after 20000 sweeps for thermalization.
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Table 1. The spectrum at zero temperature determined from
the point and the smeared correlators. The masses in PS and
V channels are determined with the two-pole fit

Correlator State mPS mV

Point ground 0.36835(37) 0.37748(49)
first exc. 0.449(31) 0.463(42)
fit range 45–80 50–80

Smeared ground 0.36856(9) 0.37769(12)
first exc. 0.500(22) 0.479(23)
fit range 17–80 15–80

AtNt = 26, we find that the configurations almost stay
in a single Polyakov loop sector during the whole updat-
ing history. Transitions to other sectors occurred only once
after more than 470k sweeps. In [7] it was reported that
the light mesonic correlators behave differently on con-
figurations in different sectors. We regard quenched lat-
tices as approximations to lattices with dynamical quarks,
on which Z3 center symmetry is explicitly broken and
Polyakov loop prefers to stay on the real axis. Therefore
we transform all the configurations to the real sector of
the Polyakov loop.

5.2 Charmonium correlators

As mentioned in Sect. 3.2, we use (κ, γF ) = (0.112, 4.00),
which correspond to mQ � 0.98 GeV, roughly the charm
quark mass. The statistical errors for the results are es-
timated with the jackknife method with appropriate bin-
ning.

In the next section, we start our analysis at T = 0 with
the examination of the point correlators. On each config-
uration, we calculate the point correlators four times with
four different source points: t = 0 and 80 at spatial site x =
(0, 0, 0) and t = 40 and 160 with x = (10, 10, 10). Then
these correlators are averaged with appropriate shifts in
t-direction. At T = 0 the standard χ2 fit of data to a
multipole form works well. To fix the general picture we
anticipate on the analysis of the next sections and list in
Table 1 the result of two-pole fits of the point correla-
tors in PS and V channels. The fit ranges [tmin, tmax] are
determined by varying tmin with fixed tmax = 80 and ob-
serving the stability of the fit parameters. The results of
the ground state masses are very close to the experimen-
tally observed charmonium masses. On the other hand,
the hyperfine splitting of about 74 MeV is smaller than
the experimental value, mJ/ψ −mηc � 117 MeV. This is
a well-known feature of the quenched lattice simulations
and is considered mainly due to quenching, although lat-
tice artifacts in the charmonium system can also play an
important role [30].

The smeared correlators are the main target of this
paper for reasons we already explained. The smearing pa-
rameters were described in Sect. 3.2. The result of a fit
to 2-pole form is also shown in Table 1. It is well-known
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Fig. 4. The effective masses for the smeared correlators in PS
and V channels at three temperatures

that the correlators with smeared sink are quite noisy. To
reduce the noise, we measure sixteen correlators with dif-
ferent source points on each configuration, and average
them. We change the spatial center of the smearing func-
tion, as well as the time slice, to reduce the correlation as
much as possible. In contrast to a naive expectation, we
find this procedure efficient. In fact, at T = 0, the sta-
tistical errors are reduced by a factor of about 0.3 in the
region t = 8–16, which is the most important region for
the present analyses, in both the PS and V channels. This
reduction of errors corresponds to an increase in statistics
of about 10 times. Almost the same amount of reduction
of errors is observed at Nt = 32. At Nt = 26, the errors are
reduced by factors of 0.40–0.45 in the range t = 8–13. This
way of reducing statistical errors will be advantageous in
the case of dynamical simulations.

For the present kind of analysis, whether the analysis
is efficient or not may significantly depends on the statis-
tics. In the temporal region t = 8–16, the statistical errors
of point correlators at T = 0 are about 0.12–0.18% and
0.08–0.15% for PS and V channels, respectively. In the
same region, the smeared correlators have statistical er-
rors of 0.14–0.17% and 0.15–0.20%. Therefore at T = 0
the errors are of the same order for the point and smeared
correlators. At finite temperature, with 1000 configura-
tions, the statistical errors are of roughly the same size as
at T = 0. We also note that the correlation between the
correlators at neighboring time slices is stronger for the
point correlators than for the smeared ones.

To obtain an impression of the physics to be expected
at various temperatures we show in Fig. 4 the effective
mass plot for the smeared correlators, with meff (t) de-
fined through

C(t)
C(t+ 1)

=
cosh [meff (t)(Nt/2 − t)]

cosh [meff (t)(Nt/2 − t− 1)]
. (38)

If the correlator is dominated by a single (stable) state,
meff (t) shows a plateau. In Fig. 4, the effective masses at
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T = 0 show plateaus beyond t � 16. The effective masses
atNt = 32 (T � 0.9Tc) show almost the same behaviors as
at T = 0. This implies that the charmonium states are al-
most unchanged at this temperature, compared to those at
T = 0. In contrast, meff (t)’s at Nt = 26 (T � 1.1Tc) show
quite different behavior: they decrease rapidly compared
to those at T < Tc, and in the large t region (t ≥ 10) the
pseudoscalar and vector channels are almost degenerate.
Therefore a qualitatively different behavior of the spectral
function is expected below and above Tc. These features
are consistent with observations in earlier work [8].

6 Analysis at zero temperature

6.1 Result of MEM for point correlators

We start with MEM analysis of the point correlators at
zero temperature.

First we discuss the default model function. Following
previous applications of MEM to lattice data [9,13], we
adopt as mDM in (32) the asymptotic values of correlators
in the perturbative QCD,

1
ω2A

cont(ω 
 ΛQCD) =
r1
4π

(
1 + r2

αs
π

)
, (39)

where r1 = 3/2 and r2 = 11/3 for PS channel, and r1 = 1
and r2 = 1 for V channel. As value of the strong coupling
constant αs, we use αs = 0.2 at 8 GeV from [31] as a typi-
cal value at the temporal cutoff of the present lattice. The
matching of the lattice theory with the continuum the-
ory is performed through the tadpole-improved tree-level,
and hence the renormalization of the quark field is repre-
sented only by the KLM normalization factor (22). These
settings give for the parameter of the default model func-
tion mDM = 4.1 for PS channel, and 2.4 for V channel.
If MEM works as a method to extract the spectral func-
tion without assuming a specific form, the result should
not be sensitive to the choice of this parameter. In ad-
dition, the observed asymptotic behavior of the spectral
function from lattice data around the cutoff is actually
different from that of (39) [32]. We therefore observe the
dependence of the result on the value of mDM by changing
mDM by factors of 10 and 0.1, to verify the insensitivity
of the result to mDM .

The further setting of MEM is as follows. In all cases,
the correlator at t = 0 is not used for the analysis. The
minimum of t used depends on the type of analysis, in
most cases tmin = 1 is adopted. The frequency ω is dis-
cretized with ∆ω = 0.002, in the region [ωmin, ωmax] =
[0.001, 4.0]. The dependence of the result on the parame-
ters for ω is sufficiently small around the adopted values.

We first examine how the restriction of degrees of free-
dom of the correlator affects the reconstructed spectral
function. Three parameters tmin, tmax and tsep are intro-
duced, that is MEM is applied for the correlators at times
tmin ≤ t ≤ tmax in every tsep time slices. We examine two
types of restrictions of the numbers of degrees of freedom:
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Fig. 5. The result of MEM analysis of the point correlator in
PS channel at T = 0. The figure shows the tmax dependence
of the resultant spectral function
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(I). tmax is varied as 48, 24, 16, and 12, with fixed tmin =
1 and tsep = 1. The corresponding numbers of data
points are the same as tmax.

(II). tsep is varied as 1, 2, 4, and 8, with fixed tmax = 48.
tmin is varied accordingly as tmin = tsep. Correspond-
ingly, the numbers of data points are 48, 24, 12, and
6, respectively.

From the point of view of the basis functions of the sin-
gular value decomposition in the spectral function space,
case (I) reduces the number of basis functions while keep-
ing the functions unchanged. On the other hand, case (II)
dilate the basis functions by a factor of tsep simultane-
ously reducing their number. Reliability of the result at
finite temperature requires the obtained spectral function
to be stable under the type (I) restriction. Although larger
values for tmax are possible, tmax = 48 is sufficiently large
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and has appropriate physical range (tmaxaτ � 1.2 fm) for
the present purpose.

The result is shown in Figs. 5 and 6 for the pseu-
doscalar channel. For the vector correlator a similar re-
sult is obtained. In the case of tmax = 48 and tsep = 1,
i.e. without restriction, the reconstruction of the spectral
functions seems successful, and their fundamental features
appear to be the same as in previous works [9,13]. The
peak positions of the ground and first excited states are
consistent with the result of χ2 fit summarized in Table 1.
Here we do not discuss the higher excited states because
of uncertainties not only in MEM but also in the χ2 fit
analysis.

Figure 5 displays the result under restriction condi-
tions (I). Decreasing tmax, the spectral function becomes
increasingly different from that with tmax = 48. For
tmax ≤ 24, the first excited state peak does not appear
at the correct place, and for tmax ≤ 16 even the ground
state peak is located at an incorrect place and has broad
width. These lowest peaks for different tmax’s are all sig-
nificant in the sense of the error analysis of MEM [9].
Therefore tmax ≤ 16 is not acceptable for extracting reli-
able information of the ground state from the point cor-
relators. Since at finite temperature we are restricted to
tmax ≤ 16 because of short temporal extent this is the
reason why we abandon using the point correlators and
apply the smearing technique.

Figure 6 shows the result with restriction condition
(II). In this case, the reconstructed spectral functions are
rather stable, while the sharpness of peaks is lost by in-
creasing tsep. Even with 6 degrees of freedom (as a lin-
ear combination of 6 functions), the reconstructed spec-
tral function at least exhibits the ground state peak at
the correct position. To summarize, if one has a temporal
region of the correlator of the order of 1 fm, the spectral
function can be rather nicely reconstructed even with less
than 10 degrees of freedom.

From these observation, we conclude that with O(10)
degrees of freedom the crucial condition is determined by
the region of t where the correlators are measured. tmaxaτ
of the order of 1 fm seems necessary for a reliable extrac-
tion of the spectral function from the point correlator. In-
creasing the number of degrees of freedom above 10 with
fixed physical range of [tmim, tmax] improves the situation
only slightly.

Now we consider the effect of the statistics. We apply
the same analysis of the case (I) restriction to the correla-
tors averaged over first 100 configurations. The observed
features of tmax dependence are essentially the same as
with 500 configurations. Therefore at the present level of
statistics (order of several hundreds), increasing statistics
does not seem to improve drastically the situation of the
tmax dependence. We also compare the correlators aver-
aged over 100 configurations randomly selected from the
total of 500 configurations. A comparison of the results
with tmax = 48 from five such correlators shows that the
first excited state does not always appear at the same
place as with 500 configurations, but deviates in a range
of ω = 0.44–0.52. Thus with less statistics only the ground

state peak can be trusted even with tmax = 48. These ob-
servations indicate the required statistics for each situa-
tion.

Finally we briefly discuss the dependence on the de-
fault model. We compare the results obtained with mDM

in (32) multiplied by 10 and 0.1 with otherwise fixed pa-
rameters, tmax = 48 and tsep = 1. These results of the
spectral function display the peaks at the same places as
with original mDM , while increasing mDM the peaks be-
come sharper. Although present analysis is quite simple,
we conclude that the default model dependence of the re-
sult of MEM is not severe, at least for a rough estimate
of the shape of the spectral function.

The most important conclusion in the analysis of the
point correlator is that we need the order of 1 fm for the
range of t where the correlators are measured, for reliable
extraction of the spectral function from the correlator with
present level of statistics. This requirement cannot be ful-
filled at finite temperature, and a brute force application
of MEM to the point correlators at T > 0 would produce
an unreliable result. This result warns us against physical
significance of the results in [16,17,18,19]. This difficulty
may originate in that the point correlator at short distance
contains the contribution from wide range of frequency up
to the lattice cutoff. We therefore give up to analyze fur-
ther the point correlators, and concentrate our attention
on the smeared correlators.

6.2 Result of MEM for smeared correlators

We now turn to MEM analysis of the smeared correlators.
Since the smearing technique reduces the high frequency
part, there is no a priori choice for the form of the default
model. As described in Sect. 4.2, we use the same default
model function as for the point correlator, with the nor-
malization of the smeared correlator which gives the same
overlap with the ground state as the point correlator. The
default model dependence is examined in the same man-
ner as for the point correlators. Other parameters are the
same as for the point correlator, except that ωmax = 2.0
is adopted, since the high frequency region is sufficiently
suppressed.

First we examine the dependence of the result on the
numbers of degrees of freedom, using the same restriction
conditions as for the point correlators. Since the smearing
technique enhances the low energy part, we only consider
whether the ground state peak is correctly reproduced or
not. The result for the restriction condition (I) is displayed
in Fig. 7. In the both cases of PS and V channels the
place of the ground state peak is stable with decreasing
tmax, although the width is gradually broadened. Since
the ground state peak evidently has no physical width at
T = 0, this fictitious width is a systematic uncertainty
of MEM due to the insufficient number of basis functions
in the spectral function space. Therefore, in particular at
finite temperature, an estimate of the physical width re-
quires a careful analysis combined with other procedures.
The instability of the first excited state peak under chang-
ing tmax is explained by the smallness of the contribution
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Fig. 7. The spectral functions at Nt = 160 determined with
MEM. The top and bottom panels show the tmax dependences
of obtained spectral functions in PS and V channels, respec-
tively

to the correlators from energies above the ground state. In
fact, the two-pole fit analysis indicates that the overlap of
the first excited state with the smeared correlator is about
7% (6%) of that of the ground state for the PS (V) chan-
nel. Thus the instability of the excited state peaks has no
significance for the following analysis. We conclude that
for the smeared correlators, MEM with tmax � 12 would
work for a rough estimate of the structure of the spectral
function in the low energy part, such as examination of
whether strong ground state peak exist, while a quantita-
tive evaluation of width, for example, is difficult. In the
case of the restriction condition (II), a similar tendency
as for the point correlators is observed: the position of the
ground state peak is stable with increasing tsep, while the
sharpness of the peak is gradually lost.

The mDM dependence of the result is examined in two
cases of tmax, tmax = 48 and 12, by using rescaling factors
10 and 0.1. In the case of tmax = 48, the ground state peak
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Fig. 8. The default model dependence of the extracted spec-
tral function with MEM from the smeared correlators in PS
channel. The figure shows the result of MEM with three values
of mDM , the parameter of the default model function (32)

is strong, and changing mDM does not cause a large effect
other than the decrease of the peak height with slight in-
crease of the width when decreasing mDM . Figure 8 shows
the case of tmax = 12 for the PS channel. Although the
peak shape is broadened with decreasing mDM , the es-
sential features of the result are stable. A similar result is
observed for the V channel.

Let us summarize the MEM analysis of the smeared
correlators at T = 0. In contrast to the case of the point
correlators, MEM with restricted numbers of degrees of
freedom works up to tmax = 12, i.e. tmaxaτ � 0.3 fm,
at least for a rough estimate of the shape of the spectral
function in the low energy part. For this purpose, system-
atic uncertainties in the default model parameter do not
appear significant. This is an encouraging result for an
application of MEM to finite temperature as a precedent
analysis to the χ2 fit.

6.3 Result of χ2 fit analysis

The results with 2-pole ansatz have been given in Table 1.
For completeness, we also apply the χ2 fits to the smeared
correlators with forms other than the 2-pole fit. The result
is shown in Fig. 9. As fit range [tmin, tmax] we fix tmax =
13, considering the severest case at T > 0, and observe the
tmin dependence of the result. The top and bottom panels
of Fig. 9 show the results of mass and width of the ground
state peak, respectively. The fit result for the ground state
mass is slightly larger than that of the full data analysis
with tmax = 80 in Table 1. This deviation indicates a
typical size of the systematic uncertainty caused by the
short fit ranges.

As is expected, the 2-pole form describes well the cor-
relators, and the other two fit forms are consistent with
the 2-pole fit. In the cases of 1-BW and BW+pole fits
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Fig. 9. The result of the χ2 fit analysis at Nt = 160. The top
and bottom panels show the results for mass and width of the
ground state peak, respectively

the tmin dependences of the widths are significant. In the
bottom panel the results for the width decreases as tmin
increases, and seem to approach zero. Therefore no indi-
cation of a finite width is found at T = 0, as it should
be.

7 Analysis at T < Tc

Now the two analysis procedures are applied to the cor-
relators at T � 0.9Tc (Nt = 32). In this and the next
sections we no longer discuss the point correlators and
focus only on the smeared ones.

7.1 Result of MEM analysis

We begin with the MEM analysis, in accordance with our
strategy. The parameters concerning MEM are almost the
same as for the smeared correlators at T = 0. The range
of t is fixed to tmin = 1, tsep = 1, and tmax = 16.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
ω

0

10

20

30

40

A
(ω

)

mDM=4.10
mDM=41.0
mDM=0.41

1000conf.
tmax=16,  PS

smeared
Nt=32

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
ω

0

5

10

15

A
(ω

)

mDM=2.40
mDM=24.0
mDM=0.24

1000conf.
tmax=16,  V

smeared
Nt=32

Fig. 10. Spectral functions at Nt = 32 determined with MEM

The result is displayed in Fig. 10 for three values of
mDM . For the reasons already mentioned we focus on the
ground state peak and do not discuss in detail the high fre-
quency part of the spectral function. As apparent in the
figure a ground state peak appears in both the PS and
V channels. Although with decreasing mDM the widths
of the ground state peaks increase, the positions of the
peaks are stable and almost the same as at T = 0. In
the present case, since there is no intrinsically advisable
value for mDM beyond an order estimate, this ambiguity
of the width of the peak should be considered as an uncer-
tainty of MEM applied to the smeared correlators. We also
perform the same analysis with less statistics, 500 config-
urations, to see how this result depends on the statistics.
The result is essentially the same, and thus statistically
stable.

These results support the assumption that the mesonic
ground states are persistent up to this temperature, with
almost the same masses as at T = 0. The width of
the ground state peaks is small while finite, although it
strongly depends on the value ofmDM . Whether the width
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Fig. 11. The result of χ2 fit analysis at Nt = 32. The top
and bottom panels show the results of the mass and width
parameters for the ground state peak, respectively

is physically finite or not should therefore be examined
with the χ2 fit analysis.

7.2 Result of χ2 fit analysis

According to the result of MEM we can assume that the
spectral function of the smeared correlator at this temper-
ature has a peak structure at almost the same mass as at
T = 0 and with small width. Therefore it is expected that
the χ2 fits with the three types of fit forms, 2-pole, 1-BW,
and BW+pole forms can clarify the low energy structure
of the spectral function.

The results are summarized in Fig. 11. The top panel
displays the dependence of the mass parameters for the
ground state peak on the lower bound of the fit range,
tmin. The upper bound is fixed to tmax = 16. It is appar-
ent that the fit to the 2-pole form exhibits stable results
both for the PS and V channels beyond tmin = 3. The
result of fit to 1-BW form exhibits no plateau, indicating
that this form does not explain the whole structure of the

correlators. However, the values seem to approach to the
corresponding results of the 2-pole fits. The result of fit to
the BW+pole form is consistent with those of 2-pole fit
at tmin ≤ 2.

The bottom panel of Fig. 11 shows the result for the
width parameter. In the case of the fit to the 1-BW form
the value of width gradually decreases with increasing
tmin. This behavior is consistent with a vanishing width.
The fit to BW+pole form also indicate that the width is
consistent with zero. Therefore, there is no indication of a
finite width for the spectral function at this temperature.

All the results of fits to the three forms indicate that
the ground state peak is well described by a strong peak
with vanishing width, i.e. a pole-like structure, and the
associated mass is almost the same as at zero temperature.

8 Analysis at T > Tc

8.1 Result of MEM analysis

In this section, we analyze the correlators at T � 1.1Tc
(Nt = 26).

The setup of MEM analysis is the same as at T �
0.9Tc, except for tmax = 13. Figure 12 shows the result.
In both the PS and V channels there appear strong peak
structures around ω � 0.4. This peak, hereafter called
“the ground state peak” for simplicity, appears at almost
the same position as at T � 0.9 but with larger width. Al-
though, as a common tendency, the peak becomes sharper
as the default model parameter mDM increases, the posi-
tion of the peak is unchanged. It is also verified that the
result is essentially the same with less statistics, namely
500 configurations. Therefore it is presumable that the
spectral function still has a peak structure at almost the
same position as below Tc.

This result should be compared with the case where
the correlators are composed of free quarks, considered in
Sect. 3.3. In the latter case, as shown in Sect. 4.4, MEM
with the present number of degrees of freedom may pro-
duce the same feature of the spectral function but with a
lower peak position. The above result therefore does not
exclude the possibility that the correlators are composed
of two weakly interacting quarks with rather large effec-
tive mass.

To judge between almost free quarks and genuine
bound-state-like structure we analyze the half-smeared
correlator. We repeat the same analysis as applied to
the smeared correlators for the half-smeared correlators
and verify that MEM works up to tmax = 12 on almost
the same level as for the smeared ones. As discussed in
Sect. 4.4, if the correlator is composed of two almost free
quarks the extracted spectral function should exhibit now
a wider peak at a higher position. Figure 13 shows the
result of MEM analysis for the half-smeared correlators.
The analysis is performed in the same manner as for the
smeared correlators. Comparing with the result for the
smeared correlator, the peak position for the half-smeared
one is almost unshifted, while the width of the peak tends
to broaden slightly. The latter effect , however, can also be
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Fig. 12. The spectral function at Nt = 26 determined with
MEM (smeared correlators)

explained as an effect of default model uncertainty. This
result is therefore not in accord with the assumption that
the peak structure is an artifact of the smearing. Hence
the MEM analysis supports a bound-state-like structure
at this temperature.

8.2 Result of χ2 fit analysis

According to the result of MEM, it is reasonable to assume
that the spectral function of the smeared correlator at
this temperature also have a peak structure, similarly to
the T < Tc case. Therefore the three forms for the χ2 fit
analysis are still reasonable assumptions to investigate the
low energy structures of the correlators.

Figure 14 shows the result of the χ2 fit analysis for
the smeared correlators. The top panel shows the tmin de-
pendence of the mass parameters. In contrast to the case
below Tc, the masses from 2-pole fit no longer approach
those of the other two fit forms but fall monotonously.
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Fig. 13. The results of MEM for the spectral function of the
half-smeared correlators at Nt = 26

The masses from 1-BW and BW+pole fits exhibit consis-
tent behaviors, indicating that these fits represent better
the correlators. Actually the values of χ2/NDF are consis-
tently fluctuating around unity at tmin > 8 for 1-BW fit,
and in the whole range of tmin for BW+pole fit. In the
BW+pole fit, the mass parameters for the second peaks
take values around 0.9 and 1.0 for PS and V channels,
respectively, which is roughly consistent with the result of
MEM. The consistency of 1-BW and BW+pole fits also
holds for the width parameters, as displayed in the bottom
panel of Fig. 14. These results indicate therefore that the
widths associated with the ground state peaks are finite
for both the correlators in PS and V channels.

We now analyze the half-smeared correlators to ex-
amine whether this observation of peak structure is an
artifact of the smearing. The analysis is performed in the
same manner as for the (fully) smeared correlators. The
result is displayed in Fig. 15. The mass parameters for the
half-smeared correlators (top panel) show a similar ten-
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Fig. 14. The result of χ2 fit analysis for the smeared correla-
tors at Nt = 26

dency as for the smeared correlators, although the result
of 1-BW and BW+pole fits approach slightly larger val-
ues than those of smeared correlators. The shifts of the
masses are at most 5% and can be explained with the fre-
quency dependence of the overlap R(ω) in (13). A similar
tendency is also found for the width parameters in the
bottom panel of Fig. 15, which appear even more con-
sistent with those of smeared correlators than the mass
parameters.

Figure 16 illustratively compares these spectral func-
tions extracted with the χ2 fits from four kinds of corre-
lators: the smeared and half-smeared correlators, numeri-
cally measured and composed of free quarks. The results
of the numerical simulation are of the BW+pole fit with
tmin = 4. For the free quark case the results of 1-BW
fit with tmin = 8 is displayed. We note that the nor-
malizations of the spectral functions are not significant
in the present analysis. In both the PS and V channels
the spectral functions for the numerically observed corre-
lators strongly peak near ω = 0.4 with small widths. If
a peak structure is of genuine physical, the shift of peak
position caused by a change of smearing function must
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Fig. 15. The result of χ2 fit analysis for the half-smeared
correlators at Nt = 26

be within the width of the peak. This is in fact the case
in the result of numerical simulation. However in the free
quark case, in PS channel, the peak position from the fit
changes beyond the width of smeared operator as shown in
Fig. 16 (see also Fig. 3). For the vector channel, in which
the fit analysis of correlators composed of free quarks gives
larger widths than PS channel, the shift of peak caused
by the change of smearing function is also much less than
the case of free quarks. As noted at the end of Sect. 3.3,
the quantum effect may smoothen the spectral function
in the case of almost free quarks. Even taking this effect
into account, the sizable shift of mass and the broadening
of width observed in the free quark case are not observed
in the result of numerical simulation. It is difficult to ex-
clude completely the possibility that the correlators are
composed of almost free quarks with rather large effec-
tive mass and nontrivial dispersion relation. However, it
is quite suggestive that a nontrivial structure indicating
the existence of bound-state-like structure in the low en-
ergy region of spectral function subsists at this value of
T .
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Fig. 16. The spectral functions obtained with χ2 fit analysis
at Nt = 26. For the correlators composed of free quarks only
the result of BW fit is displayed, while a BW+pole fit is used
for the correlators measured in the simulation

Summarizing the results of MEM and χ2 fit analysis
we conclude that the charmonium correlators in PS and V
channels at T � 1.1Tc possess a nontrivial peak structure
in the low energy region. As representative values of m0
and γ0, we quote the results of the BW+pole fit analysis
with tmin = 4 for the smeared correlators:

PS : m0 = 3.06(2) GeV, γ0 = 0.12(3) GeV, (40)
V : m0 = 3.13(2) GeV, γ0 = 0.21(2) GeV. (41)

The quoted errors in m0 and γ0 are only the statistical
ones. As obvious from the discussions in this sections,
these results should contain systematic uncertainties of
the order of 5% due to the analysis procedures, apart
from other uncertainties such as finite lattice artifacts and
quenching effects. Compared with the result at T � 0.9Tc,
the widths at T � 1.1Tc is sizable, indicating a genuine
temperature effect in the deconfined phase. On the other
hand, the masses are almost unchanged.

9 Conclusion

The main goals of this paper were (1) to elucidate the
technical problems in extraction of the spectral function
from lattice data of t-correlators, and (2) to investigate
the temperature effect on the spectral function near the
deconfining phase transition. In the following, we summa-
rize and discuss the results obtained in this paper.

As techniques to extract the information on the spec-
tral function we examined maximum entropy method
(MEM) and the standard χ2 fit assuming suitable forms
of the spectral function. It is essential to check the relia-
bility of the applied methods to the systems in question.
Our condition for reliability at finite temperature is that
the methods reproduce the correct form of the spectral
function at T = 0 when the t-interval is restricted to the
one forced on us at T > 0. We examined MEM by ap-
plying it to the point and smeared correlators. We find
that MEM does not meet this requirement for the former,
while it does for the latter. This is understandable, since
the smearing enhances the low energy part of the spectral
function, which is what we are interested in, while a much
wide energy region contributes to the point correlators. We
note that whether MEM correctly works or not depends
primarily on the extension of the physical t-region. In par-
ticular, for the point correlators a region of t of O(1fm)
is necessary. For the smeared correlator, this condition is
much relaxed. Therefore only the smeared correlators were
analyzed at finite temperatures.

Since MEM is ambiguous concerning the quantitative
detail of the spectral function, the latter should be also
analyzed with other procedures. As such a procedure, the
χ2 fit is a reasonable candidate, since MEM already gives
a hint for a suitable ansatz for the spectral function. With
several assumed forms and examining the fit range de-
pendence of the resultant values for the parameters, this
procedure gives us more quantitative information on the
properties of spectral function. We emphasize that MEM
and χ2 fit analysis as used here are complementary to each
other. This two-step approach actually worked for analy-
ses of the correlators at finite temperature, as well as at
T = 0.

Now we discuss the physical implications of our results
below and above the critical temperature. We remind that
our numerical simulation was performed without dynam-
ical quark effects.

Below the deconfining temperature, at T � 0.9Tc, the
reconstructed spectral function has a strong peak corre-
sponding to the ground state, with almost the same mass
as at T = 0 and narrow width consistent with zero. In
contrast to the potential model analysis [1], the charmo-
nium mass is not changed up to this temperature. Similar
tendencies have been reported in previous lattice QCD
calculations for the mesonic channels [7,8], while sizable
reduction of mass has been observed for glueballs [20].
Considering the rather quantitative success of the poten-
tial model approach for the charmonium systems at T = 0
[34], it is important to explain this discrepancy.

At T � 1.1Tc we observed an indication that the spec-
tral functions still has strong peaks at almost the same
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positions as T < Tc, and with widths of about 0.12 and
0.21 GeV for PS and V channels, respectively. This re-
sult presumably indicates the existence of quasi-stable
bound-state-like structures persistent up to this tempera-
ture. The possibility of observing correlators composed of
almost free quarks (but of large effective masses) is, how-
ever, not completely excluded. The observations are not
in accord with the expectation from the naive potential
model approach [2,33]. Up to around 1.1Tc, however, it
has been pointed out that bound states may exist in a po-
tential model analysis based on recent lattice QCD data
of static potential [35]. In either case, our result implies
that the plasma phase has a nontrivial structure at least
near the critical temperature.

For a more definite understanding of hadronic correla-
tors at T > 0 more studies containing dynamical sim-
ulations are necessary, as well as calculations in wider
range of temperatures. The techniques adopted in this pa-
per should in principle be applicable to these situations.
However, it would become more difficult to distinguish a
physical peak structure from an artificial peak brought by
the smearing as temperature increases, since the contri-
bution to the correlators from the high frequency part of
the spectral function increases and the peak structure may
broaden. It is also important to repeat the same sort of
analysis in the light hadron sectors, for which a nontrivial
structure of correlators above Tc was also reported [7].
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